Microstructure and tribological behaviors of FeCoCrNiMoSix high-entropy alloy coatings prepared by laser cladding

نویسندگان

چکیده

FeCoCrNiMo high-entropy alloy (HEA) has attracted great interests due to its excellent corrosion resistance, but it suffers relatively low hardness and poor tribological performance. In this work, a systematic study on microstructural evolution behavior of equiatomic FeCoCrNiMoSix (x = 0.5, 1.0, 1.5) HEA coatings prepared by laser cladding (LC) Q235 steel substrates is reported. Confirmed X-ray diffraction analysis (XRD) energy dispersive spectrometry (EDS) results, these mainly consist Fe-rich FCC FeMoSi phases. The increase Si content leads greater lattice distortion promotes the formation Si-rich intermetallics, which can significantly improve wear resistance coatings. best achieved in FeCoCrNiMoSi1.0 coating, mechanism combined abrasive adhesive wear.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding

High-entropy alloys (HEAs) are novel solid solution strengthening metallic materials, some of which show attractive mechanical properties. This paper aims to reveal the effect of adding small atomic boron on the interstitial solid solution strengthening ability in the laser cladded CoCrFeNiAlxCu0.7Si0.1By (x = 0.3, x = 2.3, and 0.3 ≤ y ≤ 0.6) HEA coatings. The results show that laser rapid soli...

متن کامل

Microstructure of Laser Re-Melted AlCoCrCuFeNi High Entropy Alloy Coatings Produced by Plasma Spraying

An AlCoCrCuFeNi high-entropy alloy (HEA) coating was fabricated on a pure magnesium substrate using a two-step method, involving plasma spray processing and laser re-melting. After laser re-melting, the microporosity present in the as-sprayed coating was eliminated, and a dense surface layer was obtained. The microstructure of the laser-remelted layer exhibits an epitaxial growth of columnar de...

متن کامل

Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO₂ powders as the basic pre-placed materials. A certain amount of CeO₂ powder was also added to the pre-placed p...

متن کامل

Reactive Fabrication and Effect of NbC on Microstructure and Tribological Properties of CrS Co-Based Self-Lubricating Coatings by Laser Cladding

The CrS/NbC Co-based self-lubricating composite coatings were successfully fabricated on Cr12MoV steel surface by laser clad Stellite 6, WS₂, and NbC mixed powders. The phase composition, microstructure, and tribological properties of the coatings ware investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS), as well as dry s...

متن کامل

Microstructure, Tensile and Creep Properties of Ta20Nb20Hf20Zr20Ti20 High Entropy Alloy

This paper examines the microstructure and mechanical properties of Ta20Nb20Hf20Zr20Ti20. Two casting processes, namely, gravity casting and suction-assisted casting, were applied, both followed by Hot Isostatic Pressing (HIP). The aim of the current study was to investigate the creep and tensile properties of the material, since the literature review revealed no data whatsoever regarding these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Surface & Coatings Technology

سال: 2022

ISSN: ['1879-3347', '0257-8972']

DOI: https://doi.org/10.1016/j.surfcoat.2021.128009